ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks

Onur Tasar

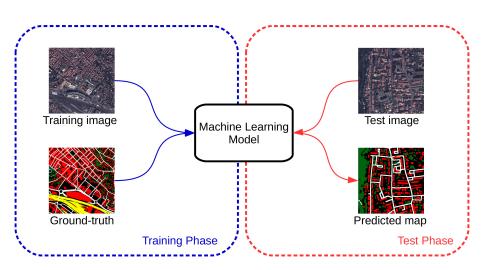
http://www-sop.inria.fr/members/Onur.Tasar https://www.linkedin.com/in/onur-tasar-814ba7133

Université Côte d'Azur, INRIA, Titane team

- Introduction
 - Semantic Segmentation
 - Limitations of the Traditional Approach
 - Domain Adaptation
 - Existing Approaches
- Proposed Method
 - ColorMapGAN
 - Overall Framework for Domain Adaptation
- Experiments
 - Experimental Setup
 - Results
- 4 Conclusion

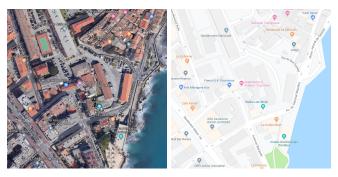
- Introduction
 - Semantic Segmentation
 - Limitations of the Traditional Approach
 - Domain Adaptation
 - Existing Approaches
- Proposed Method
 - ColorMapGAN
 - Overall Framework for Domain Adaptation
- 3 Experiments
 - Experimental Setup
 - Results
- 4 Conclusion

Semantic segmentation



Why is it important?

- Useful for a wide range of real-world applications:
 - Navigation, urban monitoring, etc.
- Manual annotation is too costly
 - The process needs to be automatized



Satellite view

Maps view

Problems of the traditional approach

- Using some part of a city as training, the other part as test data
- Training and test data have very similar statistics
- Almost never happens in real-world applications

Vaihingen dataset

Domain adaptation definition

- New satellite images are collected from different locations of the world everyday
- Large domain shift between images because of atmospheric effects, differences in acquisition, seasonal changes, etc.
- The model generates unsatisfactory maps because of the domain shift
- Aim at developing a method that is robust to such shift

Béziers (tr. img.)

Roanne (test img.)

Roanne pred.

A possible solution

- Unpaired image to image translation (I2I). Generate fake training image that is:
 - semantically exactly the same as original training image
 - spectrally as similar as possible to test image

Béziers Training city

ziers Fake Béziers

Roanne Test city

A possible solution

- Unpaired image to image translation (I2I). Generate fake training image that is:
 - semantically exactly the same as original training image
 - spectrally as similar as possible to test image

Béziers Training city

Fake Béziers

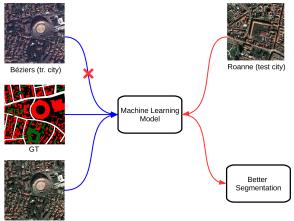
Roanne Test city

A possible solution

- Unpaired image to image translation (I2I). Generate fake training image that is:
 - semantically exactly the same as original training image
 - spectrally as similar as possible to test image

A possible solution contd

• Use fake image and GT for the original image to train a model



Fake Béziers (fake tr. city)

Existing unpaired I2I & domain adaptation approaches

Learning based approaches:

 $\Rightarrow \mathsf{CycleGAN^1}$

 \Rightarrow UNIT³

 \Rightarrow MUNIT⁴

 $\Rightarrow DRIT^6$

 \Rightarrow AdaptSegNet⁷

Non-learning based approaches:

 $\Rightarrow \mathsf{Histogram} \ \mathsf{matching}^2$

⇒ Color constancy algorithms

(e.g., gray world⁵)

¹Zhu et al., "Unpaired image-to-image translation using cycle-consistent adversarial networks".

²Gonzalez and Woods, *Digital Image Processing (3rd Edition)*.

³Liu, Breuel, and Kautz, "Unsupervised image-to-image translation networks".

⁴Huang et al., "Multimodal unsupervised image-to-image translation".

⁵Buchsbaum, "A spatial processor model for object colour perception".

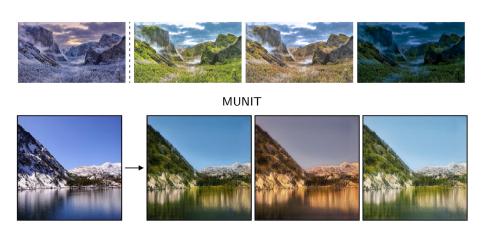
 $^{^6\}mathrm{Lee}$ et al., "Diverse image-to-image translation via disentangled representations" .

⁷Tsai et al., "Learning to adapt structured output space for semantic segmentation" a c

CycleGAN & UNIT

CycleGAN UNIT

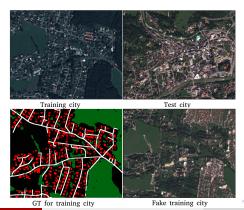
MUNIT & DRIT



DRIT

Limitations of the existing I2I approaches

- Satellite images contain a lot of heterogeneous and complex structures
- When generating a fake city, I2I approaches:
 - can transfer the style of test image to training image successfully
 - are not able to keep original and fake training images semantically consistent



- Introduction
 - Semantic Segmentation
 - Limitations of the Traditional Approach
 - Domain Adaptation
 - Existing Approaches
- Proposed Method
 - ColorMapGAN
 - Overall Framework for Domain Adaptation
- 3 Experiments
 - Experimental Setup
 - Results
- 4 Conclusion

ColorMapGAN

- Do we need convolution, pooling, etc. operations?
- Can we map each color of training image to another one for style transfer?
- Generator of ColorMapGAN consists of only 1 matrix multiplication and 1 matrix addition

ColorMapGAN - Color mapping

- RGB is all the possible colors of training city
- R'G'B' the colors of fake training city
- W and K are learnable parameters. How to learn them?

RGB (256 x 256 x 256, 3)

0	0	0
0	0	1
0	0	2
•••	••	:
255	255	255

W (256 v 256 v 256 2)

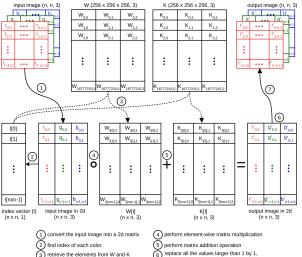
W (256 X 256 X 256, 3)						
W _{0,0}	W _{0,1}	W _{0,2}				
W _{1,0}	W _{1,1}	W _{1,2}				
W _{2,0}	W _{2,1}	W _{2,2}				
••	•••	•••				
W _{16777215,0}	W _{16777215,1}	W _{16777215,2}				

K (256	K (256 x 256 x 256, 3)						
K _{0,0}	K _{0,1}	K _{0,2}					
K _{1,0}	K _{1,1}	K _{1,2}					
K _{2,0}	K _{2,1}	K _{2,2}					
:	•••	•••					
K _{16777215,0}	K _{16777215,1}	K _{16777215,2}					

R'G'B' (256 x 256 x 256, 3)

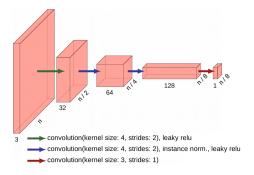
81	10	7	
61	171	1	
0	0	92	
:	•••	•	
25	155	51	l

ColorMapGAN - Generator



- retrieve the elements from W and K
- matrices using the index matrix and smaller than -1 by -1 7 reconstruct the output image
 - <ロト 4回 ト 4 画 ト 4 画 ト 一 画

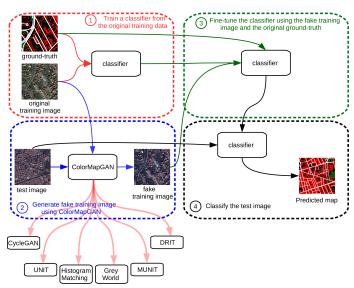
ColorMapGAN - Discriminator & Training details



- Use LSGAN⁸ as the loss functions
- Use Adam optimizer to train generator and discriminator jointly

onur.tasar@inria.fr Data Science Meetup 03/10/2019 17 / 35

Overall Framework



onur.tasar@inria.fr

- Introduction
 - Semantic Segmentation
 - Limitations of the Traditional Approach
 - Domain Adaptation
 - Existing Approaches
- 2 Proposed Method
 - ColorMapGAN
 - Overall Framework for Domain Adaptation
- 3 Experiments
 - Experimental Setup
 - Results
- 4 Conclusion

Data set

- Luxcarta data set containing RGB, 8 bit, Pléiades images
- Spatial resolution is 1m
- GT for road, building, tree classes is provided

onur tasar@inria.fr

20 / 35

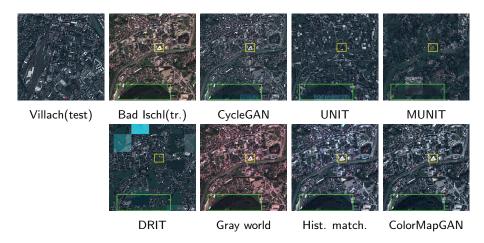
Data set contd.

The statistics for the Luxcarta data set.

City	# of patches	Area (km²)	Class frequency (%)			
City	# or pateries	Alea (Kill)	building	road	tree	
Bad Ischl	457	27.71	5.51	6.03	35.38	
Villach	749	43.59	9.26	10.63	19.91	
Béziers	407	25.75	19.09	17.62	10.91	
Roanne	384	25.84	18.44	8.33	14.78	

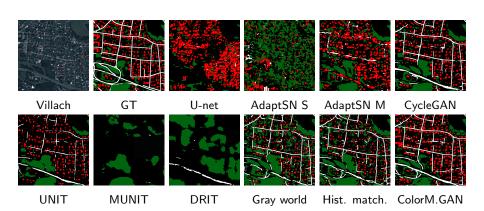
- Use 256×256 training patches
- Perform city to city domain adaptation between the following city pairs:
 - Bad Ischl ⇔ Villach
 - Béziers ⇔ Roanne

Original and Fake Bad Ischl (test city in pair1: Villach)

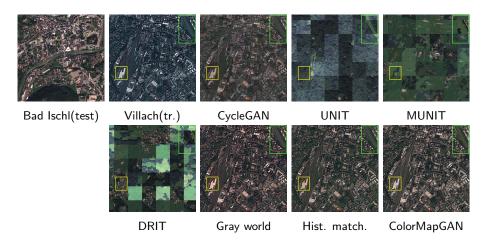


Predictions for Villach (training city in pair1: Bad Ischl)

 We did not add "our framework with" statement for the sake of simplicity

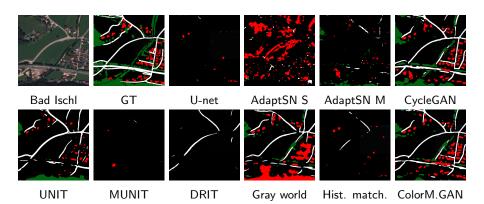


Original and Fake Villach (test city in pair1: Bad Ischl)

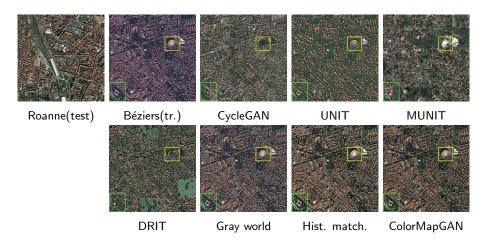


Predictions for Bad Ischl (training city in pair1: Villach)

 We did not add "our framework with" statement for the sake of simplicity

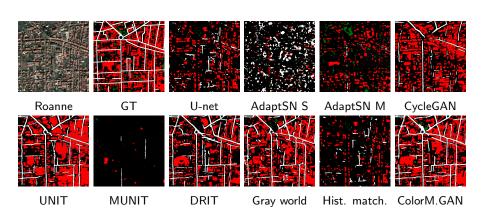


Original and Fake Béziers (test city in pair2: Roanne)



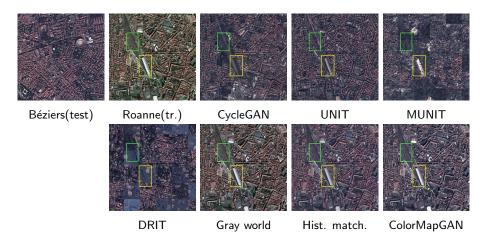
Predictions for Roanne (training city in pair2: Béziers)

 We did not add "our framework with" statement for the sake of simplicity



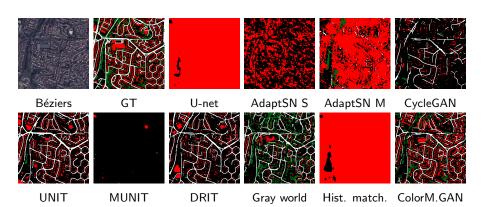
27/35

Original and Fake Roanne (test city in pair2: Béziers)



Predictions for Béziers (training city in pair2: Roanne)

 We did not add "our framework with" statement for the sake of simplicity



Quantitative Results

IoU scores for the test cities in pair 1

Method		Training: Bad Ischl, Test: Villach				Training:	Villach	, Test:	Bad Ischl
	Wiethou	building	road	tree	Overall	building	road	tree	Overall
	U-net	23.61	0.91	40.53	21.68	5.84	0.24	0.50	2.19
A	daptSegNet Single	6.01	4.37	10.43	6.94	3.06	2.71	10.23	5.33
AdaptSegNet Multi		24.59	9.02	56.08	29.86	14.26	4.46	24.66	14.46
	CycleGAN	43.03	28.96	68.86	46.95	43.62	38.69	71.68	51.33
sed with	UNIT	30.86	15.84	63.00	36.57	19.29	36.83	35.57	30.56
	MUNIT	0.02	1.38	47.23	16.21	6.20	0.13	0.05	2.13
proposed work wit	DRIT	0.01	3.96	8.72	4.23	0.00	10.19	0.01	3.40
	Gray world	25.19	26.43	56.15	35.92	29.55	24.80	46.41	33.58
ra our	Histogram matching	24.95	29.34	61.59	38.63	6.45	0.92	1.28	2.88
	ColorMapGAN (ours)	48.47	37.82	58.92	48.40	49.16	41.75	59.84	50.25

IoU scores for the test cities in pair 2

Method		Training: Béziers, Test: Roanne				Training: Roanne, Test: Béziers			Béziers
	Wethou	building	road	tree	Overall	building	road	tree	Overall
	U-net	26.13	11.16	7.79	15.03	19.85	0.00	0.00	6.62
A	daptSegNet Single	6.61	11.05	3.37	7.01	11.07	4.19	3.71	6.32
P	AdaptSegNet Multi	22.42	5.87	17.84	15.37	24.27	10.88	10.45	15.20
	CycleGAN	18.19	24.28	0.19	14.22	9.92	16.00	0.54	8.82
sed	UNIT	41.99	38.47	0.39	26.95	29.99	39.19	3.11	24.10
요소	MUNIT	10.17	1.66	0.31	4.05	7.49	0.84	0.13	2.82
2 2	DRIT	42.16	41.77	1.18	28.37	25.73	36.54	0.68	20.98
l in el	Gray world	51.47	40.42	18.25	36.71	14.61	31.32	21.99	22.64
0 0	Histogram matching	18.64	9.87	4.81	11.11	20.63	0.02	0.00	6.88
1	ColorMapGAN (ours)	55.60	44.66	28.39	42.88	47.12	35.18	21:91	34.74

onur.tasar@inria.fr Data Science Meetup 03/10/2019 30 / 35

ColorMapGAN vs CycleGAN

- CycleGAN is unstable; original and fake training cities
 - in pair 2 are semantically inconsistent
 - in pair 1 are semantically consistent
- Even when it generates consistent output,
 - resolution of the fake image is lower
 - the output has artifacts

ColorMapGAN

ColorMapGAN vs Histogram Matching

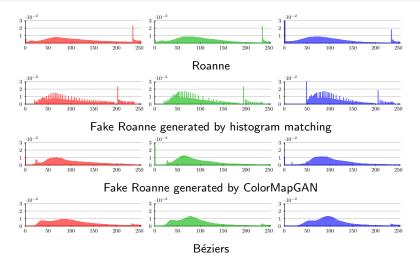
Hist. match. does not take into account the contextual information

Roanne

Hist. match.

 ${\sf ColorMapGAN}$

ColorMapGAN vs Histogram Matching contd.



Color histograms of building pixels. Red, green, and blue bins represent the histograms for red, green, and blue channels, respectively.

Running Times

- Note that we optimized ColorMapGAN for only 8,000 iterations
- It took around 6.5 minutes to train it

Training times for generating fake cities.

Method	Training time for 1 Iter. (secs.)
CycleGAN	0.11
UNIT	0.47
MUNIT	0.45
DRIT	0.29
ColorMapGAN	0.05

Execution times for generating fake cities.

City	Execution time (seconds)					
City	Gray world	Histogram matching				
Bad Ischl	1.46	19.77				
Villach	1.89	26.78				
Béziers	1.37	18.05				
Roanne	1.24	20.32				

Conclusion

- We show that spectral shift between images can easily be corrected by ColorMapGAN
- We proved its effectiveness in terms of qualitative, quantitative, and running times on two city to city pairs
- We believe the proposed approach can be used other real-world problems such as change detection